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Série 13

Exercice 1: Auto-inductance
On reprend l'exercice 4 de la semaine précédente (�Induction et force de Lorentz�) avec une bobine
de résistance R, constituée de N = nl (l est la hauteur de la bobine, n est le nombre de tours par
unité de hauteur de la bobine) spires rectangulaires de longueur k et de largeur w. Maintenant, on
prend en compte l'auto-inductance de la bobine qui sera assimilée à une bobine idéale. On supposera
que la bobine se déplace à une vitesse u constante le long de l'axe x.

(a) Pendant la période durant laquelle la bobine entre dans la zone soumise au champ B mais n'est
pas encore entièrement dedans, exprimez le �ux du champ total (le champ B extérieur plus celui
produit par le courant I dans la bobine) à travers la bobine en fonction du courant I et de la
distance x parcourue par la bobine à l'intérieur de la zone avec le champ magnétique.

(b) À partir du résultat de la partie a), montrez qu'en présence d'une variation du �ux totale,
la bobine est équivalente à un circuit fermé composé d'une résistance R, d'une inductance
L = µ0n

2lωk et d'une fem ε. Déterminez I(t) pour l'intervalle de temps où la bobine entre
dans la zone soumise au champ magnétique B uniforme.

(c) Déterminez la dépendance temporelle du courant I(t) pour l'intervalle de temps où la bobine est
entièrement dans la zone soumise au champ magnétique B uniforme (avant qu'elle ne commence
à sortir par le côté droit).
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Exercice 2: Courant induit dans une canette (Examen 2019)
On considère un cylindre creux de diamètre interne R1 et de longueur l ≫ R1, orienté le long de
l'axe z, voir la �gure ci-dessous. L'épaisseur d des parois du cylindre est très mince, d ≪ R1. Le
cylindre, constitué d'un matériau conducteur de conductivité électrique σ, est plongé dans un champ
magnétique externe B⃗ext(r⃗, t) = B⃗ext(t), uniforme dans l'espace, donné par

B⃗ext(t) = 0⃗ pour t < 0

B⃗ext(t) = αt e⃗z pour t ≥ 0

où α > 0 est une constante

x
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(a) Pour t > 0, trouvez la valeur de la tension induite et la direction du courant induit dans le
cylindre par le champ magnétique B⃗ext(t). Justi�ez votre réponse. Négligez ici l'auto-inductance
du cylindre, c'est à dire l'e�et du champ magnétique généré par le courant induit.

(b) Dans le cas a), pour t > 0, donnez l'expression du courant induit I(t) en fonction de σ, α et
des paramètres géométriques de la canette. Quelle est la valeur de I(t) dans la limite σ → ∞ ?

(c) On suppose maintenant que l'on peut écrire la densité de courant dans la paroi du cylindre
comme j⃗ = −j0e⃗θ. Utilisez la loi d'Ampère pour déterminer, à l'intérieur du cylindre (r < R1),
la norme et la direction du champ magnétique B⃗c généré par j⃗, en exprimant la norme de B⃗c

en fonction de j0, puis également en fonction du courant I.
Indication : vous pouvez supposer que le champ magnétique B⃗c est nul à l'extérieur du cylindre

(r > R1 + d) et que l ≫ R1.

(d) Déterminez l'expression du courant I(t) en prenant en compte les e�ets d'auto-induction du
cylindre et en supposant que I(t = 0) = 0.

(e) En utilisant les résultats des parties c) et d), déterminez le champ magnétique total à l'intérieur
du cylindre (r < R1) pour un temps t = t0 > 0, et trouvez sa valeur pour les cas limites σ → 0
et σ → ∞.
Indication : vous pouvez utiliser le développement limité ex ≈ 1 + x pour une quantité x ≪ 1.
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Exercice 3: Circuit électrique oscillant - Principe de la bobine de Tesla (Examen 2020)
On considère le circuit montré dans la �gure ci-dessous, composé d'un condensateur de capacité C,
d'une bobine avec auto-inductance L, et d'une résistance de valeur R. L'auto-inductance du reste du
circuit (à part celle de la bobine déjà tenue en compte) est négligeable. La situation initiale est telle
que l'interrupteur S est ouvert et que le condensateur porte la charge +q0.

(a) À t = 0, on ferme l'interrupteur S. Démontrez que l'équation di�érentielle régissant l'évolution
du courant est donnée par

L
d2I

dt2
+R

dI

dt
+

I

C
= 0. (3)

(b) On a que I(t = 0) = 0. Montrez que la deuxième condition initiale pour le courant est dI
dt (t =

0) = + q0
LC si vous avez dé�ni la direction positive du courant dans la direction de l'aiguille de

montre, ou dI
dt (t = 0) = − q0

LC dans le cas contraire.

(c) Avec les résultats des parties a) et b), déterminez I(t) dans la limite L
C > 1

4R
2.

On ajoute maintenant une deuxième bobine, entourant la première comme indiqué sur la �gure ci-
dessous. La première bobine reste connectée au circuit comme avant. Les bornes de la deuxième
bobine sont ouvertes, tel qu'aucun courant ne peut circuler dans cette bobine. La longueur l1, la
section S1, et le nombre de spires N1 de la première bobine sont connus. Même chose pour la
deuxième bobine (l2, S2, N2). Les deux bobines peuvent être considérées comme des bobines idéales.

(d) Exprimez la valeur absolue de la tension induite dans la deuxième bobine en fonction du courant
I(t) dans la première bobine et d'autres quantités données.

(e) Trouvez la valeur absolue du rapport entre la tension induite dans la deuxième bobine et la
tension entre les bornes de la première bobine. Pour simpli�er l'expression �nale, exprimez l'auto-
inductance de la première bobine en fonction du nombre de spires et de ses dimensions.
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(f) En utilisant le résultat pour I(t) trouvé dans la partie c) et en supposant maintenant que R = 0,
donnez l'expression de la tension maximale induite dans la deuxième bobine en fonction de la
capacité et de la charge initiale q0 du condensateur.

Exercice 4: Onde électromagnétique (Examen 2019)
(a) Dérivez l'équation d'onde pour le champ magnétique B⃗ à partir des équations de Maxwell dans

le vide (densité de charge ρel = 0, densité de courant j⃗ = 0).
Rappel : Pour un champ vectoriel A⃗ (r⃗), on a l'identité suivante :

∇⃗ ×
(
∇⃗ × A⃗

)
= ∇⃗

(
∇⃗ · A⃗

)
−∆A⃗

(b) Les ondes électromagnétiques visibles ont une longueur d'onde entre λ1 = 380 nm et λ2 =
750 nm (1 nm = 10−9 m). Trouvez les fréquences ν1 et ν2 associées à ces ondes dans le vide.
La vitesse de la lumière est c = 3× 108 m.s−1

(c) On considère des ondes sonores de mêmes longueurs d'onde (entre λ1 = 380 nm et λ2 =
750 nm). Trouvez les fréquences ν1 et ν2 associées à ces ondes à 20◦C. Ces ondes sont-elles
audibles pour un être humain ? L'indice adiabatique γ de l'air est 7/5, la masse moyenne des
molécules dans l'air est m = 29 · 1.67 · 10−27 kg et la constante de Boltzmann est 1.38 ·
10−23 J.K−1. Les fréquences audibles pour un être humain s'étendent typiquement de 16 Hz à
16 kHz.

Exercice 5: Ré�exion et transmission d'une onde électromagnétique
Considérons une onde électromagnétique qui se propage dans le vide vers un matériau diélectrique
uniforme et isotrope, avec un indice de réfraction n =

√
εr > 1. L'incidence de l'onde est perpendi-

culaire à l'interface entre vide et matériau. On s'attend à ce qu'une partie de l'onde soit transmise
et une partie ré�échie. Pour le champ E⃗ associé à l'onde, on fait l'ansatz :
� Pour z < 0 : ˜⃗

E(z < 0, t) =
˜⃗
EI(z, t) +

˜⃗
ER(z, t)

avec ˜⃗
EI(z, t) = EXI ei(ωt−kIz+φI)e⃗x

et ˜⃗
ER(z, t) = EXR ei(ωt+kRz+φR)e⃗x

� Pour z > 0 : ˜⃗
E(z > 0, t) =

˜⃗
ET (z, t)

avec ˜⃗
ET (z, t) = EXT ei(ωt−kT z+φT )e⃗x

EXI , EXR et EXT sont tous ∈ R et positifs.
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(a) On suppose que ω, kI , kR et kT sont tous positifs. Exprimez kI , kR et kT en fonction de ω.
Indication : dans un matériau avec indice de réfraction n, la vitesse de la lumière est c/n, avec
c la vitesse de la lumière dans le vide.

(b) Complétez l'ansatz pour E⃗ par la composante du champ magnétique. Utilisez la relation

˜⃗
B =

k⃗ × ˜⃗
E

ω

qui suit de la Loi de Faraday est qui est valable dans le vide comme dans le matériau. Pourquoi
sur la �gure avons-nous représenté B⃗Y R opposé à B⃗Y I ?

(c) On peut montrer qu'à l'interface vide-diélectrique, les composantes des champs E⃗ et B⃗ parallèles
à l'interface sont continues 1. Utilisez ces conditions pour exprimer EXR, φR, EXT et φT en
fonction de EXI et φI .

(d) Comme application numérique de la partie c), on prend l'interface air-eau. On a nair =
√
εr,air ≈√

1.0006 ≈ 1 ≈ cas du vide, et neau =
√
εr,eau ≈

√
1.7 = 1.3 (valable pour les longueurs d'onde

dans le visible). Quelle est votre conclusion ?

1. Pour E⃗, ceci est une conséquence de l'équation de Maxwell-Faraday, pour B⃗ c'est une conséquence de l'équation

de Maxwell-Ampère et du fait qu'il n'y a pas de courants de surface dans un diélectrique.
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